107 research outputs found

    Ein Beitrag zur Basisdefinition des Elementmodells "Wirkflächenpaare & Leitstützstrukturen" zum Zusammenhang von Funktion und Gestalt technischer Systeme

    Get PDF
    Kurzfassung Die Entwicklungsmethodik liefert Methoden zur Unterstützung des Produktentwicklers im Produktentwicklungsprozess. Existenzberechtigung eines jeden technischen Systems ist dessen Funktion. Eine große Herausforderung bei der Entwicklung neuer technischer Systeme ist die Umsetzung einer zu erfüllenden Funktion in eine Gestalt. Dieser Prozessschritt wird bisher methodisch nur unzureichend unterstützt. Grundlage einer methodischen Unterstützung bei der Umsetzung einer Funktion in eine Gestalt muss ein allgemeingültiges Beschreibungsmodell für technische Systeme sein, welches Funktion und Gestalt verknüpft. Umfangreiche Untersuchungen realer konstruktiver Gestaltungsprozesse und systematische Abstraktion führten zu einem Modell - Elementmodell "Wirkflächenpaare & Leitstützstrukturen" -, welches eine allgemeingültige Verbindung zwischen Gestalt und Funktion technischer Systeme schafft. Der vorliegende Forschungsbericht beschreibt das theoretische Fundament des Modells und zeigt, dass das Wirkflächenpaar und die mit ihm auftretende Leitstützstruktur gemeinsame Elemente aller technischen Systeme sind. Mit Hilfe des Elementmodells werden systematisch technische Systeme, die auf mechanischen, fluidmechanischen und auf Feldern basierenden Wirkprinzipien beruhen, analysiert. Dabei wird jegliche Funktion in technischen Systemen auf die Interaktionen im Wirkflächenpaar und der sich an das Wirkflächenpaar anschließenden Leitstützstruktur zurückgeführt. Auf Basis des Modells werden Ansätze zur Entwicklung einer durchgängigen Methodik zum Denken und Handeln in der Gestaltungsphase der Produktentwicklung aufgebaut. Es wird gezeigt, dass das Elementmodell sowohl bei der systematischen Analyse bereits bestehender technischer Systeme als auch bei der kreativen Synthese neuer technischer Systeme zielführend eingesetzt werden kann. Abstract Methodology in product development supports the complete product development process. One major challenge of product development is the step from the searched product function to the product shape. This step is decisive for a successful product development and up to now it is methodological insufficient supported. Methods to support this step have to be based on abstract models, which link the function of technical systems to shape. The analyses of real constructive product design processes and their systematic abstraction led to a model ­ the element model "Working Surface Pairs & Channel Support Structures" ­. This model describes the correlation of layout and function of technical systems. The presented research report describes the theoretic basis of the model. Common elements of each technical system are the "working surface pair" and its accompanying "channel and support structure". Technical Systems with mechanical, fluid mechanical and field based working principles were exemplary analysed with the aid of the element model. Every function in technical systems can be ascribed to an interaction within the working surface pair and the connected channel and support structure. The element model can be helpful during the analysis of already existing technical systems as well as during the synthesis of new technical systems. In several real product development projects with industrial partners the new method has shown its efficiency. On basis of the model first methods are developed to support the analyses of existing technical systems as well as the synthesis of new technical systems

    Study on the Impact of Cognitive Load on Performance in Engineering Design

    Get PDF

    Rethinking how we describe product models in engineering design research

    Get PDF
    Product models are an important part of a designer’s daily practice, and as such, they require the continuous attention of design researchers for further progress. However, there is no common vocabulary or structure to describe product models in engineering design. This weakens the discourse by preventing a common understanding and fostering ambiguity. To address this problem, this research note formulates three stances on product models that incorporate a vocabulary within a contextual structure as a contribution towards a shared understanding when describing product models and their underlying concepts. These stances are classification-oriented, functionality-oriented, and message-oriented. By discussing the implications of using these stances, it is illustrated how they facilitate comparability, avoid misunderstandings, and reveal links to the state of research

    Methodical support for investigation of system behaviour by means of analysis techniques - overcoming non-transparency in embodiment design

    Get PDF
    One challenge in adaptive design of technical systems is insufficient understanding of the mechanical system behavior. The actual system behaviour often differs from the system behaviour expected by the designer. This is due, for example, to influences from manufacturing, wear, or errors in the designer’s understanding. For the analysis of the differences between expected and actual system behavior, the system behaviour can be observed. Special analysis techniques are often necessary for system observation. However, the missing methodical support in the system-specific use of analysis techniques is a challenge. In this contribution, a methodical support for the selection and adaptation of analysis techniques for system observation is developed. For this, known errors that occur during system observation are operationalised and provided as requirements for evaluation of analysis techniques. The support is provided as a Selection Matrix, in which the evaluated analysis techniques can be selected and adapted. This is evaluated considering an accompanying application to the non-transparent system wood screw connection. By using the analysis techniques selected with the method, it was possible to identify the actual system behaviour and gain new insights. Here, the Selection Matrix provided support through a structured evaluation of analysis techniques. The Selection Matrix also supported the adaptation of analysis techniques for improved observation of the system behaviour. No general statements on the quality of the support by the Selection Matrix are yet possible. Also, the operationalisation of the errors should be improved to reduce subjective influences. Therefore, these topics should be investigated in further studies
    corecore